DEPT. OF MATHEMATICS

JHARGRAM RAJ COLLEGE

B.Sc(H) Sem - V , INTERNAL ASSESSMENT-1 ${ }^{\text {st }}$, 2019-20
 Sub: MATHEMATICS, Course - C11

Full Marks: 10
Time: $\mathbf{3 0 m}$.
Answer any five questions:

1. If ω be the angular velocity of a planet at the nearer end of the major axis, prove that its period is $\frac{2 \pi}{\omega} \sqrt{\frac{(1+e)}{(1-e)^{3}}}$.
2. Write down Kepler's $2^{\text {nd }}$ law on planetary motion $\&$ deduce the expression for the periodic time of a planet.
3. Prove that $h=p v$ where h, p, v are the standard notations.
4. A particle describes the parabola $p^{2}=a r$ under a force which is always directed towards its focus. Find the law of force.
5. Form PDE by eliminating the function from $z=e^{a x+b y} f(a x-b y)$.
6. Find the integral surface of the linear PDE $x\left(y^{2}+z\right) p-y\left(x^{2}+z\right) q=\left(x^{2}-y^{2}\right) z$ which contains the straight line $x+y=0, z=1$.
7. Find the complete integral of $z p q=p+q$.
8. Prove that along every characteristic strip of the $\operatorname{PDE} f(x, y, z, p, q)=0$ the function f is constant.

DEPT. OF MATHEMATICS
 JHARGRAM RAJ COLLEGE

B.Sc(H) Sem - V , INTERNAL ASSESSMENT-2 ${ }^{\text {nd }}$, 2019-20

Sub: MATHEMATICS, Course - C11
Full Marks: 10
Time: $\mathbf{3 0} \mathrm{m}$.
Answer any five questions:

1. Classify $u_{x x}+u_{y y}+u_{z z}=0$
2. State Cauchy- Kowalewskaya Theorem.
3. Consider the following Cauchy problem of an infinite string with initial condition

$$
\begin{gathered}
u_{t t}-c^{2} u_{x x}=0, x \in \mathbb{R}, t>0 \\
u(x, 0)=f(x), x \in \mathbb{R} \& u_{t}(x, 0)=g(x), x \in \mathbb{R}
\end{gathered}
$$

Write down the corresponding characteristic equation and the integrals.
4. Consider the Cauchy problem for $u_{t t}=c^{2} u_{x x}+h^{*}(x, t)$ with initial conditions $u(x, 0)=f(x), u_{t}(x, 0)=g^{*}(x)$. Show that by the coordinate transformation $y=c t$ the above problem reduced to $u_{x x}-u_{y y}=h(x, y) ; u(x, 0)=$ $f(x), u_{y}(x, 0)=g(x)$ where $h(x, y)=-\frac{h^{*}(x, t)}{c^{2}}, g(x)=\frac{g^{*}(x, t)}{c}$.
5. A spherical drop of liquid falling freely in a vapour acquires mass by condensation at a constant rate k. Show that the velocity after falling from rest in time t is $\frac{1}{2} g t\left(1+\frac{M}{M+k t}\right)$.
6. A smooth parabolic tube is placed vertex downwards, in a vertical plane. A particle slides down the tube from rest under gravity. Write down the equation of motion along the tangent.
7. A point moves along the arc of a cycloid in such a manner that the tangent as it rotates with constant angular velocity. Show that the acceleration of the moving point is constant in magnitude
8. A heavy particle slides down a rough cycloid of which the coefficient of friction is μ. Its base is horizontal \& vertex downwards. Write down the equations of motion.

